The Pores of Kohn, an Overlooked Pulmonary Structure: A Review

Main Article Content

Aboubacar Kaka
Frederick Merchant

Abstract

Many studies from the early 20th century on the significance of the pores of Kohn were assessed based on the pathogenesis and pathology of pneumococci pneumonia occurring in man. The pneumococci were carried in the edema fluid directly from alveolus to alveolus through the pores of Kohn and from bronchiole to bronchiole as a result of repeated aspirations, aided by breathing, coughing, and gravity. With the emerging minimally invasive and non-invasive techniques experimentations and the current medications; tackling exacerbations and improving the pulmonary function in various lung diseases remains a dilemma for clinicians and researchers. In this article, we aim to review specifically the pores of Kohn as this is the portal for the spread of infection but also lung recruitment during breathing.

Article Details

Kaka, A., & Merchant, F. (2024). The Pores of Kohn, an Overlooked Pulmonary Structure: A Review. Journal of Pulmonology and Respiratory Research, 8(2), 063–068. https://doi.org/10.29328/journal.jprr.1001063
Review Articles

Copyright (c) 2024 Kaka A, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Wright JL, Churg A. A model of tobacco smoke induced airflow obstruction in the guinea pig. CHEST. 2002;121:188S–191S. Available from: https://doi.org/10.1378/chest.121.5_suppl.188s

Blickensdorf M, Timme S, Figge MT. Hybrid agent-based modeling of Aspergillus fumigatus infection to quantitatively investigate the role of pores of Kohn in human alveoli. Front Microbiol. 2020;11:1951. Available from: https://doi.org/10.3389/fmicb.2020.01951

Weiss MJ, Burri PH. Formation of interalveolar pores in the rat lung. The Anatomical Record. 1996;244:481-489. Available from: https://doi.org/10.1002/(sici)1097-0185(199604)244:4%3C481::aid-ar6%3E3.0.co;2-y

Yoshikawa A, Shuntarosato, Tanaka T, Hashisako M, Kashima Y, Tsuchiya T, et al. Breakdown of lung framework and an increase in pores of Kohn as initial events of emphysema and a cause of reduction in diffusing capacity. Int J COPD. 2016;11:2287-2294. Available from: https://doi.org/10.2147/COPD.S114281

Cormier Y, Laviolette M, Atton L, Sériès F. Influence of lung volume on collateral resistance in normal man. Respiration Physiology. 1991;83:179-188. Available from: https://doi.org/10.1016/0034-5687(91)90027-g

Ng CSH, Lau RWH, Lau KWK, Underwood MJ, Yim APC. Defeating the pores of Kohn. Asian Cardiovasc Thorac Ann. 2013;22(1):102–104. Available from: https://doi.org/10.1177/0218492312474454

Cordingley JL. Pores of Kohn. Thorax. 1972;27:433. Available from: https://doi.org/10.1136/thx.27.4.433

Çimen D, Bulcun E, Ekici A, Güngör Ö, Ekici M. Case of round pneumonia: pulmonary infarct and a rare situation that is similar with the lung cancer. Clin Respir J. 2015;9(4):512-515. Available from: https://doi.org/10.1111/crj.12137

Ganesan SL. Airway pressure release ventilation in children: review. Curr Opin Crit Care. 2019;25(1):63-70. Available from: https://doi.org/10.1097/mcc.0000000000000575

Feldhausen D. What is causing this patient's extreme exhaustion and headache? JAAPA. 2020;33(3):54-56. Available from: https://doi.org/10.1097/01.jaa.0000654212.41559.3e

Raskin SP, Herman PG. Interacinar pathways in the human lung. Am Rev Respir Dis. 1975;111:489-495. Available from: https://doi.org/10.1164/arrd.1975.111.4.489

Franquet T. Imaging of community-acquired pneumonia: symposium review article. J Thorac Imaging. 2018;33:282-294. Available from: https://doi.org/10.1097/rti.0000000000000347

Rabin AS, Keyes CM, Oberg CL, Folch EE. Emerging interventional pulmonary therapies for chronic obstructive pulmonary disease. J Thorac Imaging. 2019;34:248-257. Available from: https://doi.org/10.1097/rti.0000000000000424

Jain M, Sznajder JL. Bench-to-bedside review: distal airways in acute respiratory distress syndrome: a review. Crit Care. 2007;11(1):206. Available from: https://doi.org/10.1186/cc5159

Loosli CG. The histogenesis of cells in experimental pneumonia in the dog. J Exp Med. 1942;76(1):79-92. Available from: https://doi.org/10.1084/jem.76.1.79

Behnia MM, Catalano PW, Brooks WS. Hemoptysis in a 38-year-old woman receiving an oral contraceptive. Pulmonary and critical care pearls. CHEST. 2004;125:1944-1947. Available from: https://doi.org/10.1378/chest.125.5.1944

Laberge JM, Puligandla P, Flageole H. Asymptomatic congenital lung malformations. Semin Pediatr Surg. 2005;14:16-33. Available from: https://doi.org/10.1053/j.sempedsurg.2004.10.022

Scarpelli EM. The alveolar surface network: a new anatomy and its physiological significance. Perinatology Center, Cornell University College of Medicine, New York, NY 10021. The Anatomical Record. 1998;251:491-527. Available from: https://doi.org/10.1002/(sici)1097-0185(199808)251:4%3C491::aid-ar8%3E3.0.co;2-v

Ohsaki Y, Abe S, Mimura S, Kirisawa T, Murao M. Asymptomatic branching shadow in the lung. Chest. 1980;77:89-90. Available from: https://journal.chestnet.org/article/S0012-3692(16)37523-7/abstract

Desplechain C, Foliquet B, Barrat E, Grignon G, Touati F. The pores of Kohn in pulmonary alveoli. Bull Eur Physiopathol Respir. 1983;19(1):59-68. Available from: https://pubmed.ncbi.nlm.nih.gov/6850150/

Lu D, Stanely C, Nune G, Frazer D. A mathematical description of the pressures in alveolar pores of Kohn. J Biomech Eng. 1991;113:104-108. Available from: https://doi.org/10.1115/1.2894075

Oldham MJ, Moss OR. Pores of Kohn: forgotten alveolar structures and potential source of aerosols in exhaled breath. J Breath Res. 2019; in press. Available from: https://doi.org/10.1088/1752-7163/ab0524

Mehta AC, Ghobrial M, Thaniyavarn T, Khemasuwan D. Common congenital anomalies of the central airways in adults. Chest. 2015;148(1):274-287. Available from: https://doi.org/10.1378/chest.14-1788

Kobayashi Y, Uehara T, Kawasaki K, Sugano M, Matsumoto T, Matsumoto G, et al. Three-dimensional analysis of alveolar wall destruction in the early stage of pulmonary emphysema. Clin Anat. 2015;28:227-234. Available from: https://doi.org/10.1002/ca.22463

Tubbs RR, Benjamin SP, Osborne TG, Barenberg S. Surface and transmission ultrastructural characteristics of desquamative interstitial pneumonitis. Hum Pathol. 1978;9(6):693-703. Available from: https://doi.org/10.1016/s0046-8177(78)80052-5

Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221-226. Available from: https://doi.org/10.1186/cc1027

Kohn II. On the histology of indurating fibrinous pneumonia. Münch Med weekly magazine. 1893;8:42-45.

Hubner R-H, Herzog D. COPD treatment: about collateral channels and collapsing airways. Eur Respir J. 2016;47:1606-1610. Available from: https://doi.org/10.1183/13993003.00343-2016

Gompelmann D, Eberhardt R, Herth FJF. Collateral ventilation. Respiration. 2013;85:515-520. Available from: https://doi.org/10.1159/000348269

Al-Tikritri MS, Henryh W, Eilert W, Schultzm A, Breider A, Cullens WC. Fine structural aspects of postnatal development of feline lung. Anat Histol Embryol. 1991;20:311-319. Available from: https://doi.org/10.1111/j.1439-0264.1991.tb00306.x

Jackson T, Babarenda TG, Gamage T, Tawhai MH. The influence of pores of Kohn on alveolar tissue micromechanics. Auckland Bioengineering Institute, Auckland, New Zealand. C65 computational methods, models, and drug delivery: thematic poster session. Am J Respir Crit Care Med. 2020;201.

Xi J, Talaat M. Nanoparticle deposition in rhythmically moving acinar models with interalveolar septal apertures. Nanomaterials. 2019;9:1126. Available from: https://doi.org/10.3390/nano9081126

Zuo Y, Li L, Liu S. Kohn’s pores are not responsible for collateral ventilation between inflated and deflated segments: a microscopic study of pulmonary intersegmental septa in the human lung. J Anat. 2015;226:381-385. Available from: https://doi.org/10.1111/joa.12288

Shimura S, Boatman ES, Martin CJ. Effects of ageing on the alveolar pores of Kohn and on the cytoplasmic components of alveolar type-1 cells in monkey lungs. J Pathol. 1986;148:1-11. Available from: https://doi.org/10.1002/path.1711480103

Peaō MND, Águas AP, de Sá CM, Grande NR. Morphological evidence for migration of particle-laden macrophages through the interalveolar pores of Kohn in the murine lung. Acta Anatomica. 1993;147:227-232. Available from: https://doi.org/10.1159/000147509

Hislop A, Reid L. Growth and development of the respiratory system—anatomical development. In: Davis JA, Dobbing J, editors. Scientific foundations of pediatrics. London: Heinemann; Elsevier.

Rothe T. True restrictive ventilatory pattern in asthma. J Asthma. 2010;47:397-399. Available from: https://doi.org/10.3109/02770901003692769

Paramalingam S, Parkinson E, Sellars M, Diaz-Cano S, Nicolaides KH, Davenport M. Congenital segmental emphysema: an evolving lesion. Eur J Pediatr Surg. 2010. Available from: https://doi.org/10.1055/s-0029-1246129

Szapiel SV, Fulmer JD, Hunninghake GW, Elson NA, Kawanami O, Ferrans VJ, Crystal RG. Hereditary emphysema in the tight-skin (Tsk/+) mouse. Am Rev Respir Dis. 1981;123:680-685. Available from: https://doi.org/10.1164/arrd.1981.123.6.680

Williams AJ, Schuster SR. Bronchial atresia associated with a bronchogenic cyst: evidence of early appearance of atretic segments. Chest. 1985;87(3):396. Available from: https://doi.org/10.1378/chest.87.3.396

Rothe T. True restrictive ventilatory pattern in asthma. J Asthma. 2010;47:397-399. Available from: https://doi.org/10.3109/02770901003692769

Oldham MJ, Moss OR. Pores of Kohn: forgotten alveolar structures and potential source of aerosols in exhaled breath. J Breath Res. 2019;13:021003. Available from: https://doi.org/10.1088/1752-7163/ab0524

DeMarco B, MacRosty CR. Review: bronchoscopic management of COPD and advances in therapy. Life. 2023;13:1036. Available from: https://doi.org/10.3390/life13041036

Van Meir F. The alveolar pores of Kohn in young postnatal rat lungs and their relation with type II pneumocytes. Histol Histopathol. 1991;6(1):55-62. Available from: https://pubmed.ncbi.nlm.nih.gov/1806056/

Glasgow JE, Farrell BE, Fisher ES, Lauffenburger DA, Daniele RP. The motile response of alveolar macrophages: an experimental study using single-cell and cell population approaches. Am Rev Respir Dis. 1989;139:320-329. Available from: https://doi.org/10.1164/ajrccm/139.2.320

Kikuchi R, Kikuchi K, Hildebrandt J, Sekizawa K, Yamaya M, Sasaki H. Bronchomotor agents and hysteresis of collateral resistance in dog lobe. Respiration Physiol. 1994;96:127-137. Available from: https://doi.org/10.1016/0034-5687(94)90121-X

Ferin J. Pulmonary alveolar pores and alveolar macrophage-mediated particle clearance. The Anatomical Record. 1982;203:265-272. Available from: https://doi.org/10.1002/ar.1092030208

Gradwohl SE, Dietrich RA, Whitlock WL. Persistent middle lobe abnormality in an East African male. Chest. 1989;96:1182-1183. Available from: https://doi.org/10.1378/chest.96.5.1182

Daoud B, Moncada R, Ali J. Lung mass in a smoker. Chest. 2001;119:947-949. Available from: https://doi.org/10.1378/chest.119.3.947

Takaro T, Chapman WE, Burnette R, Cordell S. Acute and subacute effects of injury on the canine alveolar septum. Chest. 1990;98:724-732. Available from: https://doi.org/10.1378/chest.98.3.724

Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiol. 1978;32:121-140. Available from: https://doi.org/10.1016/0034-5687(78)90104-4

Barrett K, Barman S, Boitano S, Brooks H. Ganong’s review of medical physiology. 24th ed. New York, NY: McGraw-Hill; 2012.

Terry PB, Traystman RJ, Newball HH, Batra G, Menkes HA. Collateral ventilation in man. N Engl J Med. 1978;298:10-15. Available from: https://doi.org/10.1056/nejm197801052980103

Boatman ES, Ward G, Martin CJ. Morphometric changes in rabbit lungs before and after pneumonectomy and exposure to ozone. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(3):778-784. Available from: https://doi.org/10.1152/jappl.1983.54.3.778

Wagner EM, Liu MC, Weinmann GG, Permutt S, Bleecker ER. Peripheral lung resistance in normal and asthmatic subjects. Am Rev Respir Dis. 1989;141(3):584–588. Available from: https://doi.org/10.1164/ajrccm/141.3.584

Cordier JF, Loire R, Brune J. Idiopathic bronchiolitis obliterans organizing pneumonia: definition of characteristic clinical profiles in a series of 16 patients. Chest. 1989;96:999-1004. Available from: https://doi.org/10.1378/chest.96.5.999

Katikireddy CK, Krishna G, Berry G, Faul J, Kuschner W. 24-year-old woman with bilateral pulmonary infiltrates, pericardial effusion, and bilateral pleural effusions. Chest. 2005;128:4013-4017. Available from: https://doi.org/10.1378/chest.128.6.4013

Zhang B, Korolj A, Lai B. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3. Available from: http://www.bzhanglab.com/uploads/1/0/7/0/107034629/natrevmat.pdf

Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber D. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-1668. Available from: https://doi.org/10.1126/science.1188302

Menkes H, Lindsay D, Gamsu G, Wood L, Muir A, Macklem PT. Measurement of sublobar lung volume and collateral flow resistance in dogs. J Appl Physiol. 1973;35(6):917-921. Available from: https://doi.org/10.1152/jappl.1973.35.6.917

Mazzone RW, Kornblau S. Size of pores of Kohn: influence of transpulmonary and vascular pressures. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(S):739-745. Available from: https://doi.org/10.1152/jappl.1981.51.3.739

Raji AR. Histological study of lung parenchyma of the one-humped camel (Camelus dromedarius). J Appl Anim Res. 2006;30(1):37-40. Available from: https://doi.org/10.1080/09712119.2006.9706821

Mariassy AT, Plopper CG, Dungworth DL. Characteristics of bovine lung as observed by scanning electron microscopy. Anat Rec. 1975;183(1):13-26. Available from: https://doi.org/10.1002/ar.1091830103