A decade of targeted therapy for non-small cell lung cancer

Main Article Content

Khalid Abu Ajaj

Abstract

Chemotherapy is one of the main treatment options for cancer. However, chemotherapeutic agents usually suffer from poor pharmaceutical properties that restrict their use. Targeted therapy drugs have been developed to specifically target changes in cancer cells that help these cells to grow. Such drugs often work when standard chemotherapeutic drugs do not, they often have less severe side effects and they are most often used for advanced cancers. The objective of this article is to give an overview about the 16 FDA-approved targeted therapy drugs to treat non-small cell lung cancer.

Article Details

Ajaj, K. A. (2017). A decade of targeted therapy for non-small cell lung cancer. Journal of Pulmonology and Respiratory Research, 1(1), 023–027. https://doi.org/10.29328/journal.jprr.1001005
Mini Reviews

Copyright (c) 2017 Abu Ajaj K.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Dolly SO, Collins DC, Sundar R, Popat S, Yap TA. Advances in the Development of Molecularly Targeted Agents in Non-Small-Cell Lung Cancer. Drugs. 2017; 77: 813-827. Ref.: https://goo.gl/XjqRJw

No Authors. FDA approves Avastin in combination with chemotherapy for first-line treatment of most common type of lung cancer. Cancer Biol Ther. 2006; 5: 1425-1428. Ref.: https://goo.gl/wRvL5W

Markham A. Brigatinib: First Global Approval. Drugs. 2017; 77: 1131-1135. Ref.: https://goo.gl/bEYp8G

www.fda.gov.

Horn L, Sandler A. Chemotherapy and antiangiogenic agents in non-small-cell lung cancer. Clin Lung Cancer. 2007; 8: 68-73. Ref.: https://goo.gl/bbKEXJ

Hennequin C. Targeted therapies and radiotherapy in lung cancer. Cancer Radiother. 2007; 11: 77-83. Ref.: https://goo.gl/KFgHJm

Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015; 23: 32-38. Ref.: https://goo.gl/fr4u92

Cardones AR, Banez LL. VEGF inhibitors in cancer therapy. Curr Pharm Des. 2006; 12: 387-394. Ref.: https://goo.gl/auKpiw

Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006; 28: 1779-1802. Ref.: https://goo.gl/dgq4Ud

Aprile G, Rijavec E, Fontanella C, Rihawi K, Grossi F. Ramucirumab: preclinical research and clinical development. Onco Targets Ther. 2014; 7: 1997-2006. Ref.: https://goo.gl/VGbGe5

Fala L. Cyramza (Ramucirumab) Approved for the Treatment of Advanced Gastric Cancer and Metastatic Non-Small-Cell Lung Cancer. Am Health Drug Benefits. 2015; 8; 49-53. Ref.: https://goo.gl/m7YmSt

Metro G, Finocchiaro G, Toschi L, Elisabetta M, Alessandra C, et al. Epidermal growth factor receptor (EGFR) targeted therapies in non-small cell lung cancer (NSCLC). Rev Recent Clin Trials. 2006; 1: 1-13. Ref.: https://goo.gl/x25PLq

Pillai RN, Ramalingam SS. Necitumumab: a new therapeutic option for squamous cell lung cancer? Transl Lung Cancer Res. 2014; 3: 382-383. Ref.: https://goo.gl/nCpDgg

Fala L. Portrazza (Necitumumab), an IgG1 Monoclonal Antibody, FDA Approved for Advanced Squamous Non-Small-Cell Lung Cancer. Am Health Drug Benefits. 2016; 9; 119-122. Ref.: https://goo.gl/gGFrbV

McDermott J, Jimeno A. Pembrolizumab: PD-1 inhibition as a therapeutic strategy in cancer. Drugs Today (Barc). 2015; 51: 7-20. Ref.: https://goo.gl/eJCaXN

Lim SH, Sun JM, Lee SH, Ahn JS, Park K, et al. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opin Biol Ther. 2016; 16: 397-406. Ref.: https://goo.gl/TPPqxn

Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, He K, et al. FDA Approval Summary: Pembrolizumab for Treatment of Metastatic Non-Small Cell Lung Cancer: First-Line Therapy and Beyond. Oncologist. 2017. Ref.: https://goo.gl/56EANN

Krishnamurthy A, Jimeno A. Atezolizumab: A novel PD-L1 inhibitor in cancer therapy with a focus in bladder and non-small cell lung cancers. Drugs Today (Barc). 2017; 53: 217-237. Ref.: https://goo.gl/vfSHk4

Markham A. Atezolizumab: First Global Approval. Drugs. 2016; 76: 1227-1232. Ref.: https://goo.gl/uUc3un

Flippot R, Fallet V, Besse B, Wislez M, Vignot S, et al. Nivolumab, a new hope in non-small cell lung cancer. Bull Cancer. 2015; 102: 1046-1052. Ref.: https://goo.gl/UnmCy2

Kazandjian D, Suzman DL, Blumenthal G, Mushti S, He K, et al. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer with Progression on or After Platinum-Based Chemotherapy. Oncologist. 2016; 21: 634-642. Ref.: https://goo.gl/ErnYGR

Takahama T, Sakai K, Takeda M, Azuma K, Hida T, et al. Detection of the T790M mutation of EGFR in plasma of advanced non-small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors (West Japan oncology group 8014LTR study). Oncotarget. 2016; 7: 58492-58499. Ref.: https://goo.gl/qdMcK5

Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017; 3: 001115. Ref.: https://goo.gl/w8W2wP

Nguyen-Ngoc T, Bouchaab H, Adjei AA, Peters S. BRAF Alterations as Therapeutic Targets in Non-Small-Cell Lung Cancer. J Thorac Oncol. 2015; 10: 1396-403. Ref.: https://goo.gl/2SJBL4

Takeda M, Nakagawa K. Role of EGFR Monoclonal Antibodies in the Management of Non-small Cell Lung Cancer. Curr Cancer Drug Targets. 2015; 15: 792-802. Ref.: https://goo.gl/tCiSYs

Ostoros G, Dome B. [Erlotinib in the treatment of non-small cell lung cancer]. Magy Onkol. 2006; 50: 237-241. Ref.: https://goo.gl/vdVRUy

Cohen MH, Johnson JR, Chattopadhyay S, Tang S, Justice R, et al. Approval summary: erlotinib maintenance therapy of advanced/metastatic non-small cell lung cancer (NSCLC). Oncologist. 2010; 15: 1344-1351. Ref.: https://goo.gl/Ue64Uj

Khozin S, Gideon M. Blumenthal, Xiaoping Jiang, Kun He, Karen Boyd, et al. U.S. Food and Drug Administration approval summary: Erlotinib for the first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 (L858R) substitution mutations. Oncologist. 2014; 19: 774-779. Ref.: https://goo.gl/gRPh6T

Nelson V, Ziehr J, Agulnik M, Johnson M. Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC. Onco Targets Ther. 2013; 6: 135-143. Ref.: https://goo.gl/Z5X565

Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013; 73: 1503-1515. Ref.: https://goo.gl/5iW5ny

Campbell L, Blackhall F, Thatcher N. Gefitinib for the treatment of non-small-cell lung cancer. Expert Opin Pharmacother. 2010; 11: 1343-1357. Ref.: https://goo.gl/JDPmM8

No author listed. Gefitinib Approved for EGFR-Mutated NSCLC. Cancer Discov. 2015; 5: 896. Ref.: https://goo.gl/MrygSG

McCoach CE, Jimeno A. Osimertinib, a third-generation tyrosine kinase inhibitor targeting non-small cell lung cancer with EGFR T790M mutations. Drugs Today (Barc). 2016; 52: 561-568. Ref.: https://goo.gl/oUoXud

Greig SL. Osimertinib: First Global Approval. Drugs. 2016; 76: 263-273. Ref.: https://goo.gl/naWk1f

Ou SH. Crizotinib: a drug that crystallizes a unique molecular subset of non-small-cell lung cancer. Expert Rev Anticancer Ther. 2012; 12: 151-162. Ref.: https://goo.gl/ojZoKx

Shaw AT, Solomon B, Kenudson MM. Crizotinib and testing for ALK. J Natl Compr Canc Netw. 2011; 9: 1335-1341. Ref.: https://goo.gl/qPGzc7

Bubendorf L, Büttner R, Al-Dayel F, Dietel M, Elmberger G, et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016; 469: 489-503. Ref.: https://goo.gl/uRyTWQ

Cooper MR, Chim H, Chan H, Durand C. Ceritinib: a new tyrosine kinase inhibitor for non-small-cell lung cancer. Ann Pharmacother. 2015; 49: 107-112. Ref.: https://goo.gl/xYRmGt

Guha M. Novartis' lung cancer ALK inhibitor approved. Nat Biotechnol, 2014; 32: 607. Ref.: https://goo.gl/aP2c6g

Avrillon V, Perol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol. 2017; 13: 321-335. Ref.: https://goo.gl/6A5Gfp

Larkins E, Blumenthal GM, Chen H, He K, Agarwal R, et al. FDA Approval: Alectinib for the Treatment of Metastatic, ALK-Positive Non-Small Cell Lung Cancer Following Crizotinib. Clin Cancer Res. 2016; 22: 5171-5176. Ref.: https://goo.gl/2KALyE

Siaw JT, Wan H, Pfeifer K, Rivera VM, Guan J, et al. Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, Drosophila and mice. Oncotarget. 2016; 7: 29011-29022. Ref.: https://goo.gl/d1cbXg

Asati V, Bharti SK, Mahapatra DK. Mutant B-Raf Kinase Inhibitors as Anticancer Agents. Anticancer Agents Med Chem. 2016; 16: 1558-1575. Ref.: https://goo.gl/VdGM8T

Smida M, Fece de la Cruz F, Kerzendorfer C, Uras IZ, Mair B, et al. MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated. Nat Commun. 2016; 7: 13701. Ref.: https://goo.gl/oGb69r