Abstract

Case Report

A Case series on Asthma-COPD overlap (ACO) is independent from other chronic obstructive diseases (COPD and Asthma)

Divya Khanduja* and Naveen Pandhi

Published: 30 July, 2021 | Volume 5 - Issue 1 | Pages: 054-058

As we know that, Asthma and chronic obstructive pulmonary diseases are well characterized diseases, they can co-exist as asthma-COPD overlap (ACO). The co-existence of asthma-chronic obstructive pulmonary disease overlap (ACO) in chronic obstructive pulmonary disease (COPD) patients is often unrecognized. In patients with a primary diagnosis of COPD or Asthma, the identification of ACO has got implication for better prognosis and treatment. Such patients experience frequent exacerbations, poor quality of life, rapid decline in lung function and high mortality than COPD or Asthma alone. Inhalational steroids provide significant alleviation of symptoms in such patients and some studies suggest that the most severe patients may respond to biological agents indicated for severe asthma. Patients who have asthma with a COPD component tend to present with severe hypoxia because of Irreversible/fixed airway obstruction and impairment of the alveolar diffusion capacity by emphysematous changes. In contrast, patients with COPD who have an asthma component not only have exertional dyspnoea but also develop paroxysmal wheezing or dyspnoea at night or in the early morning. The criteria to diagnose asthma-COPD overlap (ACO) include positive bronchodilator response, sputum eosinophilia or previous diagnosis of asthma, high IgE and/or history of atopy. There is scarcity of literature available in country like India. We highlight the importance of identification of Asthma COPD overlap as different phenotype from COPD or asthma alone as it is challenging to diagnose ACO in India. We report 3 cases having both the features of asthma and COPD, later diagnosed with Asthma-COPD overlap.

Read Full Article HTML DOI: 10.29328/journal.jprr.1001025 Cite this Article Read Full Article PDF

Keywords:

Asthma; COPD; Asthma-COPD overlap; Eosinophilia; ACO

References

  1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet. 2017; 390: 1211–1259. PubMed: https://pubmed.ncbi.nlm.nih.gov/28919117/
  2. Global Initiative for Asthma. Global strategy for asthma management and prevention; 2021. http://www.ginasthma.org.
  3. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of COPD. 2021 Report; 2021. http://www.goldcopd.org.
  4. Uchida A, Sakaue K, Inoue H. Epidemiology of asthma-chronic obstructive pulmonary disease overlap (ACO). Allergol Int. 2018; 67: 165-171. PubMed: https://pubmed.ncbi.nlm.nih.gov/29551279/
  5. GINA-GOLD diagnosis of disease of chronic airflow limitation: asthma, COPD and asthma-COPD overlap syndrome (ACOS). 2020. https://goldcopd.org/asthma-copd-asthma-copd-over lap-syndrome/
  6. Woodruff PG, van den Berge M, Boucher RC, Brightling C, Burchard EG, et al. American Thoracic Society/National Heart, Lung, and Blood Institute Asthma-Chronic Obstructive Pulmonary Disease Overlap Workshop Report. Am J Respir Crit Care Med. 2017; 196: 375-381. PubMed: https://pubmed.ncbi.nlm.nih.gov/28636425/
  7. Orie NGM, Sluiter HJ, eds. Bronchitis. Assen, the Netherlands: Royal van Gorcum; 1962.
  8. Wenzel SE. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat Med. 2012; 18: 716–725. PubMed: https://pubmed.ncbi.nlm.nih.gov/22561835/
  9. Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity. 2019; 50: 975–991. PubMed: https://pubmed.ncbi.nlm.nih.gov/30995510/
  10. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, et al. T-Helper type 2–driven inflammation defines major subphenotypes of asthma. Am J Resp Crit Care Med. 2009; 180L 388–395. PubMed: https://pubmed.ncbi.nlm.nih.gov/19483109/
  11. Kohansal R, Martinez-Camblor P, Agustí A, Buist AS, Mannino DM, et al. The natural history of chronic airflow obstruction revisited. Am J Resp Crit Care Med. 2009; 180: 3–10. PubMed: https://pubmed.ncbi.nlm.nih.gov/19342411/
  12. Elbehairy AF, Ciavaglia CE, Webb KA, Guenette JA, Jensen D, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. implications for dyspnea and exercise intolerance. Am J Resp Crit Care Med. 2015; 191: 1384–1394. PubMed: https://pubmed.ncbi.nlm.nih.gov/25826478/
  13. O’Donnell DE, Flüge T, Gerken F, Hamilton A, Webb K, et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004; 23: 832–840. PubMed: https://pubmed.ncbi.nlm.nih.gov/15218994/
  14. Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, et al. Asthma-COPD overlap: clinical relevance of genomic signatures of type 2 inflammation in COPD. Am J Respir Crit Care Med. 2015; 191: 758–766. PubMed: https://pubmed.ncbi.nlm.nih.gov/25611785/
  15. Sin DD, Miravitlles M, Mannino DM, Soriano JB, Price D, et al. What is asthma-COPD overlap syndrome (ACOS)? Towards a consensus definition from a roundtable discussion. Eur Respir J. 2016; 48: 664–673. PubMed: https://pubmed.ncbi.nlm.nih.gov/27338195/
  16. Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM, et al. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006; 129: 15–26. PubMed: https://pubmed.ncbi.nlm.nih.gov/16424409/
  17. Kew KM, Dahri K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst Rev. 2016; 1: CD011721. PubMed: https://pubmed.ncbi.nlm.nih.gov/26798035/

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More