
 www.pulmonolrespirjournal.com 026https://doi.org/10.29328/journal.jprr.1001070

Review Article

The Use of Machine Learning 
Decision Tree Algorithms in 
Phenotyping Acute Respiratory 
Distress Syndrome (ARDS) Based 
on Clinical, Radiological, and 
Biological Heterogeneity-
A Review
Moumita Chakraborty*
Assistant Professor, Department of Respiratory Care Technology, Narayana College 
of Health Sciences, Bengaluru, India

Abstract 

Background: Acute Respiratory Distress Syndrome (ARDS) is a clinically, radiologically, and biologically heterogeneous condition. This variability 
contributes to diagnostic challenges and inconsistent responses to therapy. Identifying homogeneous subgroups or phenotypes within ARDS may 
enhance precision medicine and therapeutic targeting.

Objective: This review evaluates the utility of decision tree–based supervised machine learning (ML) algorithms—specifi cally CART, Random 
Forest, and AdaBoost—in phenotyping ARDS using clinical, radiological, and biological data.

Methods: A comprehensive literature search was conducted between December 2023 and March 2024 using PubMed and Google Scholar. Search 
terms included ‘decision tree in ARDS’, ‘phenotype in ARDS’, and ‘ML in hypo- and hyperinfl ammatory ARDS’. Twenty-six relevant articles were included, 
comprising original studies and reviews.

Results: Decision tree–based models have demonstrated signifi cant potential in classifying ARDS subtypes using routine clinical variables, 
radiographic features, and biomarker profi les. These algorithms have shown strong predictive performance in differentiating infl ammatory 
phenotypes, forecasting mortality, and enabling early ARDS prediction.

Conclusion: Decision tree algorithms offer a promising approach to ARDS phenotyping by leveraging routinely available data. Their interpretability 
and predictive accuracy may aid in translating complex biological insights into bedside clinical decision-making, advancing personalized care in 
critical illness.
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ARDS; stratiϐied its severity based on PaO2/FiO2 of ≤100, 
101–200, and 201–300 mmHg as mild, moderate, and severe, 
respectively, requiring positive end-expiratory pressure 
(PEEP) of >= 5 cm H2O. The onset has been deϐined as 1 
week from the clinical insult and presence of bilateral chest 
inϐiltrates on chest X-ray, not caused by heart failure [5].

However, this approach of deϐining ARDS had some 
limitations as there was no linear relationship found between 
PaO2and FiO2 [6]. Also, it does not account for the relationship 
of PaO2/FiO2and the predictable structural changes in the 
alveolar–capillary membrane [7]. The deϐinition also had a 

Introduction
Acute Respiratory Distress Syndrome (ARDS) is a clinical 

syndrome that comprises diffuse lung inϐlammation and 
edema, which leads to rapidly progressive acute respiratory 
failure of type I (hypoxemic) [1,2]. It is characterized by 
pulmonary edema of non-cardiogenic origin, diffuse alveolar 
damage, and inϐlammatory cell inϐiltration [3]. The ARDS 
deϐinition has continuously evolved since the ϐirst description 
as a ‘syndrome’ by Ashbaugh and colleagues in 1967 [4].

In 2012, Berlin’s deϐinition simpliϐied the terminology of 
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Therefore, the clinical applicability of this classiϐication 
system may be limited. This represents a barrier to the clinical 
implementation of phenotypes [27].

In order to address this limitation, a study by Pratik 
Sinha, et al. used standard clinical and laboratory parameters 
to categorise patients from 3 prior clinical trials into 
inϐlammatory subtypes. The performance of the optimised 
gradient boosted model (GBM) classiϐier model - a type of 
decision tree model was evaluated on a fourth separate 
dataset, by comparing the classes it assigned to the ‘gold-
standard’ LCA classes. For the hypoinϐlammatory class, the 
GBM model (with a probability threshold of 0.5) gave the 
correct answer (assuming LCA is correct) in 98% of cases 
(460/468), but for the Hyperinϐlammatory class, it was only 
correct in 63% of cases (175/277). The combined accuracy 
for both classes was 85% [28].

In a study by Sidney Le, et al. data from 9919 patients 
were retrospectively analyzed from the Medical Information 
Mart of Intensive Care III (MIMIC III) database, using the XG 
Boost gradient boost decision tree model using routinely used 
clinical data. The classiϐier algorithm attained an AUROC value 
of 0.905, indicating the possibility to predict ARDS up to 48 
hours prior to its onset [29].

Yang P, et al. in their study to identify ARDS based on 
noninvasive physiological parameters, concluded that 
XGBoost (Decision tree) had the best performance of ARDS 
identiϐication with the sensitivity of 84.03%, the speciϐicity of 
87.75% and the AUC of 0.9128 [30].

Yui Bai, et al. conducted a retrospective study using two 
large databases, eICU and MIMIC IV, to explore the clinical 
phenotypes of sepsis-related ARDS patients and treatment 
response. Firstly, the early diagnosis model data was trained 
and tested in the eICU database. Simultaneously, the patients 
were clustered using predictable variables (clinical data). 
Also, the clinical outcome among clusters was identiϐied. The 
results were further validated in the MIMIC-IV databases to 
assess the reproducibility of results. Among the 5 machine 
learning algorithms that had been trained, Adaboost –a type of 
decision tree was the best performing model with an AUROC 
of 0.895 [31].

The efϐicacy of the decision tree was also identiϐied in a 
retrospective study on post-operative ARDS by Jianmin Ling. 
In the study, a total of 1065 patients were included. Clinical 
variables, along with laboratory variables, were used for latent 
proϐile analysis (LPA). The LPA identiϐied three subtypes of 
postoperative ARDS based on clinical features and respiratory 
compliance. Patients in proϐile 1 were mainly accepted for 
neurosurgery, proϐile 2 and 3 were treated with orthopedic 
and vascular or thoracic surgery, respectively. The XG-Boost 
model (decision tree) effectively predicted mortality with an 
AUC of 0.935, which was comparatively higher than scores 
such as SOFA (0.622), APACHE 2 (0.629), SLIP (0.579), and 
SLIP-2 (0.550) [32].

major pitfall as it was validated using only cohort trials and 
fewer prospective randomised controlled trials [8]. Also, 
certain studies [9,10], such as the LUNG SAFE study [8] and 
various other studies, have highlighted the fact that ARDS 
diagnosis may go unrecognized [11].

The occurrence of ARDS is around 10% of all Intensive 
Care Unit (ICU) patients, and the estimated mortality is 
about 40% [12]. The etiology of ARDS has been categorised 
as direct and indirect causes, with pneumonia being the 
major etiology. Different etiologies of ARDS can result 
in varied pathological and biological changes, leading to 
complex clinical and biological heterogeneity. Studies have 
shown that heterogeneity is a central factor contributing to 
failed randomized controlled trials in ARDS [13-15]. Hence, 
certain factors highlight the need for stratifying ARDS into 
homogenous subsets or phenotypes, diverse etiologies, clinical 
heterogeneity, complexity in radiographic lung morphology, 
biomarker proϐiles, and varied response to pharmacotherapy 
[9,10,16-19].

Machine learning(ML) has been proven to be a powerful 
and effective tool in various ϐields, including healthcare, to 
diagnose diseases, predict the severity of infections, estimate 
the likelihood of hospital readmissions, etc. [20,21] The 
potential for ML has been increasingly recognised in the ϐield 
of critical care medicine, such as in the prediction of ARDS 
development [22,23].

One such type of machine learning algorithm is the decision 
tree. Various studies have shown the effectiveness of decision 
trees in the classiϐication of data sets into homogeneous 
groups for better decision making [24,25]. In this review 
article, we aim to elucidate the use of decision trees in pheno-
typing ARDS based on clinical, radiological, and biological 
features.

Clinical phenotyping in ARDS

Clinical phenotypes can group ARDS patients by shared 
etiology, time-course, or radiographic presentation.

Two subphenotypes of ARDS were identiϐied in the HARP-
2 randomised cohort study: hyper- and hypoinϐlammatory 
types, with distinct clinical and biological features and 
disparate clinical outcomes involving 539 patients. The 
hyperinϐlammatory subphenotype had improved survival 
with simvastatin compared with placebo [26]. Calfee, et al. 
[27] classiϐied ARDS patients into classic hyperinϐlammatory 
and hypoinϐlammatory types, for 1022 patients: 473 in the 
ARMA cohort and 549 in the ALVEOLI cohort. Independent 
latent class models indicated that a two-class (ie, two 
subphenotypes) model was the best ϐit for both cohorts. 
But the deϐinition of this biological phenotype requires the 
use of plasma biomarkers as class-deϐining variables, such 
as sTNFR-1 and interleukin (ILs), which are not routinely 
available and cannot be quickly quantiϐied at the bedside. 
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Radiological phenotyping in ARDS

Radiological phenotyping relies on identifying distinct 
imaging patterns, primarily via chest radiographs and 
computed tomography (CT). Imaging serves not only to 
support diagnosis but also to differentiate focal versus non-
focal patterns of lung injury, which has prognostic and 
therapeutic relevance.

CT imaging can distinguish between focal (lobar) and 
non-focal (diffuse) patterns. This distinction was notably 
utilized in the LIVE trial, where an ML-based decision tree 
model identiϐied subphenotypes using basic radiological and 
ventilator parameters [23]. These included tidal volume, 
PaO₂/FiO₂ ratio, and peak airway pressure. The model 
differentiated between focal and non-focal ARDS with high 
sensitivity and speciϐicity.

The recognition of these patterns can inform ventilator 
settings. For example, patients with non-focal ARDS may 
respond better to recruitment maneuvers and higher PEEP, 
while those with focal ARDS may experience harm from 
overdistention [21,29]. However, the LIVE trial demonstrated 
increased mortality in the misclassiϐied group, underscoring 
the importance of accurate phenotyping.

Radiographically, ARDS has largely been described as 
two phenotypes, nonfocal/diffuse ARDS and focal/lobar 
ARDS, based on morphologic characteristics on computed 
tomography (CT) [33].

Supporting a biologic basis to radiographic phenotypes, 
another study reported a strong association of plasma 
concentrations of the epithelial biomarker RAGE and nonfocal 
CT-based lung-imaging patterns in patients with ARDS [34].

Biological phenotyping in ARDS

Biological phenotyping uses biomarkers such as cytokines, 
surfactant proteins, and endothelial injury markers to classify 
ARDS subgroups.

Latent class analysis has historically been used to deϐine 
hyper- and hypo-inϐlammatory phenotypes, with consistent 
replication across trials (e.g., ARMA, FACTT, ALVEOLI) [18]. 
These phenotypes show distinct cytokine proϐiles, disease 
severity, and treatment response.

Decision tree models can replicate LCA-based 
classiϐications with fewer inputs. A 2019 study demonstrated 
that a decision tree using just three variables—IL-8, protein C, 
and bicarbonate—achieved >95% accuracy in identifying the 
hyperinϐlammatory phenotype [18,22]. This simpliϐication 
enhances bedside utility and reduces the need for large 
biomarker panels.

Our understanding of the heterogeneity of critical illness 
syndromes has improved with the use of mathematical and 
statistical methods, such as cluster analysis and latent class 

analysis (LCA). However, all these ARDS studies used plasma 
biomarkers as class-deϐining variables, such as sTNFR-1 
and interleukins (ILs), which are not routinely available and 
cannot be quantiϐied rapidly at the bedside. Thus, the clinical 
applicability of this classiϐication system may be limited [35-
45].

Conclusion
ARDS is a highly heterogeneous syndrome that has deϐied 

one-size-ϐits-all therapeutic approaches. Machine learning, 
particularly decision tree–based algorithms, offers an 
interpretable and practical means of phenotyping ARDS into 
clinically meaningful subgroups. These models can integrate 
multidimensional data—including clinical variables, imaging, 
and biomarkers—into simple yet accurate classiϐication tools. 
As ML integration into the ICU progresses, decision tree–
based phenotyping could form the backbone of precision 
medicine strategies in ARDS, improving diagnostic accuracy, 
risk stratiϐication, and individualized treatment.
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